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ABSTRACT i

of nolsiness for tones and narrow bands of noise under various i
listening conditions. The growth of noisiness for a 1 kHz ?
tone and an octave band of nolse centered at 1 kHz were measured
using both the method of adjustment and a magnitude estimation
method, Equal noisiness contours were determined for selected
listening conditions in order to measure the growth of noisi-
ness at frequencies other than 1 kHz. The growth of nolsiness
was found to depend strongly on test method with the magnitude

™ estimation tests giving significantly larger values for
doubling or halving of perceived noisiness. Except for the
lowest reference level ?50 3B SPL) the adjustment test results

. ranged between 8.5 dB and 14,3 4B with a mean value of 11.5 dB.
At the 50 dB SPL reference level the mean value for doubling

the perceived noisiness is 16.7 dB. The magnitude estimation
tests yielded values between 20 dB and 27 4B for doubling of
noisiness depending on the reference number used by the test
subject. EFEqual noisiness contours are shown for pure tones

in a free field, one-third octave bands of noise in a free

field and one-third octave bands of noise in a diffuse field.
Also, comparisons of equal noise contours for one-second and
four-second stimulus durations and for loudness and noisiness
instructions are given. No significant differences were found
for these comparisons. Further, it was concluded that the
specific value used for the growth of noisiness did not
significantly affect the calculation of the relative PNL

values for many different spectra. -

T Judgment tests have been conducted to measure the growth

N
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I, GENERAL INTRODUCTICN

Increasing interest in evaluating human response to eaviron-
mental noise has emphasized the need for an accurate and reli-
able procedure for use in calculating the relative accepta-
bility of different complex noise spectra, This requirement
is particularly germane to the evaluation of vehicle noise
and more specifically, aircraft noise, Noises of this type
incorporate numerous parameters which influence subjective
responses and each of these must be weighted in any predictive
measure, The objective cf such a calculation scheme has been
one of incorporating all the salient factors influencing
responee to noise while at the same time maintaining a pro-
cedure simple enough for widespread application,

The current generation of calculation procedures concerned
with predicting human response to noise are based exclusively
on judged attributes such as loudness or noisiness, These
procedures provide a useful and simple basis for the comparison
of different noise spectra. Having used these tecaniques for
several yeare, it 1s now evident that the original methods
neecd to be refined and corrected for attributes such as dura-
tion, strong tone components and background noise, Alsc, cer-
tain original assumptions concerning this problem area need to
be re-examined, specifically those concerning the growth of
nolsiness throughout the frequency spectrum and the shgpe:.of
the equal noisiness contoure for a range of sound pressure
levels,

The cwrrent investigation has been directed touard one
of the factors inherent in exiasting calculation procedures,
i1.e,, the growth of noisiness as a function of sound preasure
level throughout the frequency spectrum, This included a
detailed study of the growuth function at the reference fre-
quency of 1 kHz as well as measurements of the prowth of
noisiness at other frequencies,

The report is diviued into three main sections, The
first two of these sections include complete deacriptions
of the separate phases of the investigation, The final
section is a summary of the teat results and the conclusions _
derived from the investigation, 1
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JXI, GROVTH OF NOISINESS AT 1 kHz

A, Dackground

The increase in the nolsiness attribute as sound intensity
is increased is the so-called power law and 1s one of the
factors comprising the scale of perceived noisiness, This
power law, identical to the function used in the assessment
of loudness, defines the change in the sound pressure level
of a given sound required for a specific change, i,.e,,
doubling or halving, of the subjective attribute,

In current practice, the growth of loudness (L) is described
as a power function of intensity (I) where the judged loudness
of a sound doubles with each 10 dB increase in the stimulus.
This is an average of the data tabulated by Stevens (1955)
and is based primarily on judgments of tones at 100C Hz,

This value of 10 4B for the intemsity ratio corresponding
to a loudness ratio of 2:1 gives an exponent of 0,3 for the
power function (logyn2) and loudness is then given by the
expression

L = 103

In setting up a scale of loudress, an empirical relation-
ship between loudness in sones and loudness level in phons (P)
has been established. This relationship may be expressed as

P =040+ 33,3 Log L

and eatablishes that a change of 10 phons is equivalent to

a factor of two in loudness, This relationship is used to
devermine the spacing between the equal loudness contours
which in turn set the sone values used in the calculation

of loudness for a complex noise, The homologous development
of the scale of perceived nolsiness has incorporated this

10 A0 change 1in intensity per doubling of the subjective
attribute as a basls for constructing the famlly of equal
noisiness contours (Kryter, 1959), In this case the power
law 1g used to specify the noy values (analogous to sones)
assocliated with a wide range of sound pressure levels, Thils
same power law was used in the subsequent modification of
the equal noisiness contours and tabulated noy values (Kryter
and Pearsons, 1963).
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A comprehensive review of experimental methods and test
results related to the growth of loudness has been published
by Stevens (1955). This included a critical appraisal of
several test methods and a tabulation of successive research
data on decibel values required for doubling or halving
of loudness for a range of sound pressure levels, The test
methods reported included magnitude estimation, constant :
stimull and adjustment, and for the most part the data
approximate the 10 dB SPL per doubling/halving of loudness ;
used in the calculation procedure, i

Hellman and Zwislocki {1961) reported an investigation
of the loudness .unction which in some ways paralleled the
magnitude estimation tests from the present study. Their
tests used the magnitude estimation method with a value of
10 assigned as a reference number at five different sensation
levels, The results of these tests showed a steepening
of the loudness function above the reference level, Whilie
there was some increase in the slope of the noisiness function
above the 90 dB SPL reference in the current tests, the curves
for the 70 dB SPL reference showed an opposite trend,

Since all previous investigations of this power law have
been concerned with the attribute of loudness, one objective
of the program described in this report was to make an
independent and original determination of the power function
for the attribute of noisiness, Further impetus for this
investigation came from the results of magnitude estimation
tests with aircraft flyover nolse and sonic booms which
yielded growth rates greater than 10 4B per doubling of
noisiness (Bishop, 1966, Broadbent and Robinson, 1964), As
an initlal investigation into the growth of noisiness per
se, a program was designed to map the growth of this noisi-
ness attribute at 1 kHz for both a tone and an octave band of
noise centered at this frequency,

In the course of analyzing the results of the growth of
noisiness data, an interesting and perhaps signiificant
observation was made, Uhen computing the PNL of a complex
noise, the noy tables are entered from the various band
levels throughout the frequency spectrum, After summing
the values according to the combination rule, the total
noy value 1is specified in the 1000 Hz band and the equiva~
lent perceived noisiness in decibel units is obtained, These
two steps, entering and leaving the noy tables, are essentlally
an inverse process and do not appear to significantly
influence the calculation of relative PNL's for many different
spectra, As a result, any value might be used for the growth
of noisiness with little or no effect on the computation of
relative acceptabllity of different noise spectra, Calcu-
lations of the PNL for a variety of nolse spectra have been

.-3-




made ueing values of 3 dB, 5 dB, 10 dB, 20 dB and 30 dB
per Coubling of noisiness with no significant differences
in the resulting values, A more complete discussion of
the influence of the power law exponent on noisiness
calculations is given in Appendix III,

F—
- ey om

B. Test Procedure

A block diagram of the test instrumentation is shown in
Pigs, 1A and 2A of Appendix I, The twe different test
stimuli were selected in order to assess the effect of
- bandwidth on the growth of noisiness, The octave bandwidth
for the nolse stimulus was selected in lieu of a one=thira
octave bandwidth so that one of the stimuli exceeded a single
eritical bandwidth at this frequency, As a further check on
the factors affecting the growth of noisiness for these
stimuli, two different test methods were employed, These
two methods, both forms of paired-comparison tests, were the
- method of adjustment and a magnitude estimation technique,

1

The initial phase of the growth of noisiness tests used
- the adjustment method, described by Stevens (1955) as &
special class of the method of ratio determination, to pro-

. duce specified multiples or fractions of & standard stimulus,
> This method requires the subject to control the level of the
comparison signal and set 1t to the required ratio relative
to the standard,

- The stimulus schedule for the adjustment tests 1s shown i
in Table I, This sequence of twenty comparisons was pre-
sented in a randomized order to each of 12 test subjects,

- The test subjects were college students ranging in age from
17 to 42 with an average age of 23 years, All subjects showed
normal hearing on audiometric screening tests,

The detailed instructions for the adjustment tests are
. presented as Appendix IIA, The subject was asked to adjust
the level of the comparison signal to some fraction or
. multiple of the noisiness of the standard sound., The
specific fraction or multiple was displayed on a panel in
front of the subject for each trial, The subject could
- switch to each of the four-second samples as often as he
wished 1n making his judgment, The stimulus presentations
> were accompanied by indicator lights on the control bos
appropriately ldentifying the standard and comparison sounds,

JENN—

. The magnitude estimation tests were conducted using
recorded stimulus pairs played back as a continuous sequence,
- Using this test method, a standard or reference sound is
presented to the subject and is assigned an arbltrary value,

L
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e.g., 10 or 100, Then a comparison tone is presented and
the subject assigns a related number to the comparison
stimulus based on its noisiness relative to the standard.

Both the tone and noise stimull were presented at two
different levels for {1e standard, 70 and 90 4B SPL. The
comparison stimull were then presented at seven different
levels for each standard, ranging from 50 to 11C dB SPL.
The test sequence contained thirty stimulus pairs including ,
both tone and noilse at the two reference levels. These
thirty stimulus pairs were recorded in six different ran-
domized orders for use in the tests.

The magnitude estimation judgments were divided into
three sections, each with a different value assigned to the
standard. For the first test section, each subject was
asked to sssign a number of his own choosing, designated
"subjects choice", to the standard sound. The remaining
two sections used the numbers 10 and 100 as values for the
standard. The "subjects cholice" section of the test was
presented first to each subject and the 10 and 10C sections
were presented randomly so there was no consistent order.

The subjects task was to record on an answer sheet the
nimber he elected to assign o the comparison stimulus based
oi. the cpecified value for the standard. The stimulus dura-
tions were four seconds for both the standard and comparison
with a one-second silent interval between the stimuli. A
six-second period following the stimulus pair was provided
for the magnitude estimation judgment. Detalled test
instructions are given in Appendix IIB,

A total of twenty-seven subjects were included in the
magnitude estimation tests. These were college students
ranging in age from 17 to 42 with an average age of 21
years. All subjects had normal hearing.

C. Test Results

1) AdJustment Tests

The results of the adjustment tests for the tone and the
nolse are presented in Figs. 1 and 2 respectively. Each
figure includes the fractions and multiples Jjudged for each
of the four reference levels, The data points are the mean
values for twelve subjects. These results are also given
in Table II in a form comparable to the loudness data
tabulated by Stevens (1955).
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FIGURE 1. GROWTH OF NOISINESS FOR A 1000 Hz TONE
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FIGURE 2. GROWTH OF NOISINESS FOR A 1000 Hx OCTAVE
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3 weey SO0y om) oy

=

r

PN Pmg Py e e

TABLE I

SCHEDULE USED FOR TEST I - METHOD OF ADJUSTMENT

Stand?rd Specified Multiple for
Noise* | Tone*# Comparison Stimulus
100 dB | 100 4B 1/2, 1/4 ag noisy

90 90 2, 1/2, 1/4 as noisy
70 70 4, 2, 1/2 as noisy
50 50 2, 1/2 as noisy

* Octave band of noise centered at 1000 Hz
**  Pure tone at 1000 Hz

TABLE II

JUDGMENT RESULTS FOR GROWTH OF NOISINESS TESTS
USING METHOD OF ADJUSTMENT

Comparison Level re Reference
Specified Level in dB
Multiple Stimulus Reference SPL
- _1G2 90 70 50
*1/4 0.B. Noise -22.2 | -22.5 -- --
1/2 0.B, Noise -12,8 | -11.6 | -10.8 | -11.1
2 0.B, Noise -- + 8,5 | +12.0 | +17.1
*l 0.B, Noise -- - +17.9 --
*1/4 1 kHz Tone | -22.6 | -23.0 -- --
1/2 1 kHz Tone | -14,3 | -12,0 ]| - 9.5 | - 8.8
2 1 kHz Tone -- + 9.1 | +12.1 | +16.3
Yy 1 kHz Tore -- -- +19.5 --
0.B., Noilse: Octave Band of Noise Centered at 1 kHz.

* T5 obtain the values for doubling or halving the
perceived noisiness cited in the text the multiples
of 4 and 1/4 in the table were converted to noisineas
ratios of 2:1 by taking half the decibel ratlos

corresponding to

4.1,
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Except for tne values for twice noisiness at a low
reference level (50 d3 SPL), the results of the adjustment
tests ranged between 8.5 dB and 14.3 d3 with a mean value
of 11.5 dB for doubling or halving the perceived noisiness
of the test stimull., At the 50 dB SPL reference the average
increase for twice noisiness is 16.7 dB.

2) Magnitude Estimation Tests

The magnitude estimation Judgments are shown in Figs. 3
through 8. Each figure gives both the mean and median values
for a specific standard, e.g., 10, 100 or "subjects choice",
at the two reference levels, 70 and 90 dB SPL. These values
were obtained by reducing the numbers assigned by the subjects
to the comparison stimuli to ratios. That is, if the value
for the standard was 10 and the subject called the comparison
23, a ratio of 2.3:1 was entered for that comparison.

The results of the magnitude estimation tests showed
consistently larger values for twice and half noisiness as
compared with the adjustment tests. These values ranged
from 20-27 dB increase for twice noisiness at the 70 dB SPL
reference and from 14-20 dB at the 90 dB SPL reference.

D. Discussion
1) Adjustment Tests

The data on the growth of noisiness obtained from the
adjustment tests in the ~urrent investigation are comparable
to the loudness values tabulated by Stevens (1955). Stevens
computed a median value of 10.0 dB for the 178 values of
decibel differences corresponding to a ratio of 2:1 for the
loudness of tones. Due to the skewness of the data, the
arithmetic mean of the numbers compiled by Stevens was 10.9
dB with a standard deviation of 3.9 dB. The current
nolsiness data had a mean of 11.5 dB and a standard deviation
of 2.3 4B for 20 values (Table II). These averages are
qQuite similar and suggest that the subjects may have been
using the same attribute criteria in all the tests.

One ‘other consistency between the data for the growth
of noisiness and those for loudness has been observed. At
lower sound pressure levels (50 dB), half noisiness requires
a smaller decibel change than twice noisiness. This 1s
revereed at higher sound pressure levels. This same
observation was made by Stevene (1955) for the loudness data.

2) Magnitude Estimation Tests
The results of the magnitude estimation judgments for the
growth of noisiness produced surprisingly shallow growth

-9-
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3. GROWTH OF NOISINESS FOR 1000 Hx TONE USING
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curves (Figs. 3 through 8). Reynolds and Stevens (1960)
obgerved that a change in the slope of the growth function
in this direction was a cheracteristic difference between
the methods of adjustment and magnitude estimation. However,
the differences 1in the nolsiness tests were quite large,
with median values runging up to 27 dB per doubling of
noisiness at a reference level of 70 4B SPL. The magnitude
estimation values for twice noisiness were consistently i
greater than 20 4B for all reference values, i.e., 10, 100 '
and "subjects choice". No significant differences in the
growth of nolsiness for the tone and the nolse were observed.
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III. GROWTH OF NOISINESS AT FREQUENCIES OTHER THAN 1 kHz

A, Bacgground

As a second phase of the investigation of the scale of
perceived noisiness, the original teet program was designed
to measure the nolsiness function at two sdditional fre-
quencies, 250 Hz and 4 kHz, However, the results of the
growth of nolsiness measurements at 1 kHz showed & strong
deperidence on test method. Because of this variation, an
alternative approach to the problem was developed.

It is possible to measure the growth of noisiness through-
out the frequency spectrum by determining equal noisiness
contours at cifferent reference levels. If this is done,
the contours should be parallel if the growth of noisiness
is the same at all frequencies. Any significant differences
in contour shape at different reference levels would be an
indication that the growth law 1is not constant at all
frequencies.

A program was therefore designed to measure equal
nolsiness contours by equating both tones and noise bands
throughout the frequency spectrum with identical reference
stimull at 1 kHz under a variety of listening conditions.
These contours, together with the growth of noisiness data
at 1 kHz would be used to map the growth function at
different frequencies.

In outlining this phase of the test program, the
following areas of investigation were established to include
some of the factors which might influence the shape of the
equal noleiness contours,

1) Determination of equal noisiness contours for pure
tones in a free-field environment for a range o
gsound pressure levels.

2) Determination of equal noisiness contours for one=
third octave bandwidth nolse in a free-field
environment for a range ol sound pressure levels,

3) Determination of equal noisiness con*~nva for one-
third octave bandwidth noise in a .. e Pield
environment Tor a range of sound pressure levels.

L) Comparison of equal noisiness contours using one-
second and four-second stimulus durations. EXIsting
equal sensation contours have beecr. pased on these




stimulus durations for loudness and noisiness
respectively., Both were included in the current
tests to provide an additional basis for comparing
the results with existing data.

5) Determination of the effect of instructional set
including a comparison of equal nolsiness contours
and equal loudness contours obtained under identical
environmental conditions.

B. Test Procedure

The tests using pure tone stimuli were conducted in a
free-field environment with frontally incident test signals.
Subjects were tested singly while seated approximately five
feet from the sound source. The adjustment method used in
these tests required the subject to adjust the level of a
comparison signal until it was judged to be equally as noisy
as the standerd or reference sound. The standard and com-
parison sounds were continuously alternating and the signal
being presented was identified to the subject by indicator
lights. The tests using bands of noise as stimuli followed
the same procedure and were conducted in both the anechoic
chamber and the semi-reverberant room. The test instructions
used for the determination of equal noisiness contours are those

presented in Appendix II-C, unless otherwise noted,

A stimulus duration of one second for both the standard
and comparison sounds with a separation of one-half second
between the stimuli was used for the pure tone tests. A
1 kHz tone was used as a standard signal. The comparison
frequencies were 63, 125, 250, 500, lk, 2k, 3.15k, U4k, 6.3k
and 8kHz. The tests using one-third octave band:'idth noise
stimuli included both one-second and four-second stimulus
durations with a one-half second interval between stimuli.
A one-~third octave band of noise centered at 1 kHz was the
standard signal for the noise tests.

C. Test Results

The results of the series of equal noisiness determinations
will be described for each of the listening conditions. The
basic results obtained for each different environment are
presented along with the sequential development of averaged
and smoothed equal noisiness contours.

1) Equal Noisiness Contours - Pure Tones in a Free-Field
Environment

The test and re~test results for a group of twenty subjects
are shown in Figs. 9 and 10, The five equal noisiness contours

-18-
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are presented at reference levels of 40,50,60,70 and 80 dB.
The median values for the twenty subjects are plotted in
Figs. 9 and 10 and these points are simply connected by
straight lines to form the initial contour shapes. The
value of one standard deviation in terms of number cf
decibels at each point is shown numerically on both of
these figures.

An average of these same test and re-test values (Figs.
9 and 10) 1is shown in Fig. 11. The straight-line connections
of these averaged points were used as the basis for a family
of flnal smoothed contours,

The procedure used to develop a set of smoothed contours
is illustrated in Figs., 12 through 14, 1In Fig. 12, the
average contours from Fig. 11 have been normalized at 1 kHz
to show the changes as a function of sound pressure level
throughout the spectrum, This particular type of display
was then used to produce the visually smoothed contour
shown in Fig. 13. This curve smoothing process represents
an estimate of the true value of the test results, i.e.,
the shape and the contours would assume as the number of
test subjects and test frequencies increased. After the
smoothed contours were established in this fashion, they
were geparated according to the sound pressure level of the
1 kHz standard used in the Jjudgment tests. This produced
the final set of smoothed curves shown in Fig. 14. These
contours (Fig. 1l4) represent judgments of discrete frequency
stimuli from 63 Hz to € kHz matched to a 1 kHz standard by
the method of adjustment. These equal noisineas contours
are essentially parallel over a 40 dB range as shown in
Fig. 14, Relatively little compression of the contours was
evident at low frequencies so that, for these pure tone
stimull, the growth of noisiness appears to be fairly con-
stant throughout the frequency spectrum.

2) Equal Noisiness Contours - One-Third Octave Bandwidth
Noise in a Free-Field Environment

The one-third octave bandwidth of pink noise was selected
as the stimulus for the remainder of the equal noisiness and
equal loudness determinations. This noise shape, when
compared with discrete frequencies, should provide some
initial information on the effects of bandwidth on noisiness
or loudness matching. 1In addition, this bandwidth of noilse
approximetes one critical bandwidth for frequencles above
100 Hz, This factor is of interest in assessing the effect
of masking in the celculstion of the noisiness of complex
noises.
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The initial test condition in this section utilized
one-second samples of the noise stimull with Jjudgments made
in the free-fileld environment. Under these conditions, the
test results in the form of the equal noisiness contours
could be compared with the pure tone centours to gain some
information on the effects of bandwidth. Also, testing these
neise stimuli in the anechoic chamber represents a first
approximation of the form of the equal noisiness contours
for an idealized outdoor listening situation.

— -y W

The data obtained from this first series of tests are

u shown in Figs. 15 and 15. The median values and standard
deviations are shown in the same way as the pure tone data.
The previous curve smoothing procedure wag used and is

- illustrated in Figs, *7 through 20. The final contours
shown in Fig. 20 are the shapes obtained for the specified
test stimull in a free-field environment.

When compared with the pure tone contours in Fig. 14, the
contour shapes for the one-third octave vandwidth noisge
stimull show more low frequency compression over the range ot
sound pressure levels and also contain a dip in the region
of 3000 Hz., This dip in the equal noisiness contour is
similar to the contour shapes from previous investigations
. (Kryter 1959, Kryter and Pearsons 1963). This similarity is
" particularly evident at the higher sound pressure levels.

] 3) Ecual Noisiness Contours - One-Third Octave Bandwidth
Noise with Four-Second Stimulus Durecion

The next test condition in this series extended the
duration of the test stimuli to four seconds. This test
wag the first of several undertaken to provide comparisons
with existing date on perceived nolsiness. The test was
conducted in the anechoic chamber using a one-third octave
j bandwidth pink noise as a test stimulus. The only parameter
} ’ that was changed was the duration of the test signals, from
one second to four seconds. The four-second stimulus
duration has been used previously in the investigation of
. noisiness (Kryter and Pearsons 1963) and was included in
i the current tests for comparison with existing data.

& A total of nine test subjects were chosen randomly from
the group of twenty who participated in the previous tests.
Three contours were defined in this test at levels of 40,
60 and 80 dB SPL for the 1 kHz noise band used as the stan-

: dard. The test instructlions described previously and shown
in Appendix IIC were used for this test.

-26=
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The equal noisiness contours, again plotted as median
values - the nine subjects with numerical notation for
the standard deviations, are shown in Fig, 21, A statis-
tical comparison of the equal noisiness data Ior the one-
second and four-second stimulus durations was made ueing
a t-test, This involved a frequency-by-frequency comparison
at each of the contour levels, No significant differences
were found for these two stimulus durations.* It should
be noted that this result is only for a condition where the |
standard and comparison stimuli are the same duration, Pre- |
vious investigations into the effects of duration (Kryter ,
and Pearsons, 1963; Pearsons 1966) on perceived noisiness
have changed the comparison duration while holding the
standard constant, Thus, the current findings apply to the
absolute rather than relative duration of the standard-
comparison stimuli,

4) Equal Noisiness Contours - Two Different Forms of
Noisiness Instructions

The conditions for the final set of comparisons made in
the free-fleld environment were identical to the preceding
tests with the exception of the test instructions, A new
group of ten subjects, described as Group II in Table III #*
were given test instructions (Appendix II-E) taken from
Kryter and Pearsons (1963) for the determination of the
existing equal noisiness contour., The results of these
Judgments are presented in Fig, 22, Five contours were
determined at levels of 40, 50, 60, 70 and 80 dB SPL for the
1 kHz noise band standard, (As in the previous test, these
results were not included in determining the smoothed-free-
field noise band contours of Fig, 20,)

A comparison was made of the contours obtained for
four-cecond duration noise stimuli tested in the anechoic
chamber (Figs, 21 and 22) using the two different forms of
the noisiness instructions shown in Appendix II. Again,
the t-test was applied at each frequency for each of the
contours with no significant differences found at any of
the points, This finding would appear to indicate that
the precise wording of the instructions for perceived
noizineas do not affect the shape of the equal noisiness .
contours,

* The statistical measure of significance is taken as the
95% confidence level,

#* Tgble III (Pg, 35) describes each of the test groups
referenced in the text,
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TABLE III
SUBJECT GROUP TYPES

Group I

Subjects had been used previously in some psycho-
acoustic testing, Average age 20,1 years, Group
population comprised of 10 male, 10 female sub-
Jects, ranging in age from 17 to 27 years

Group II

Subjects had been used previously in some psycho-
acoustic testing, Average age 19,3 years, Group
population comprised of 3 male, 7 female subjects
ranging in age from 18 to 22 years,

Group IV

Subjects never before used in psychoacoustic
tests, Average age 20,7 years, Group popula-
tion comprised of 7 male, 3 female subjects,
ranging in age from 19 to 23 years,

Group V

Subjects had been used previously i:1 psycho-
acoustic tests; howewer, different personnel
than in Groups I through IV, Average age 20,8
ears, Group population comprised of 4 male,
female subjects, ranging in age from 17 to
24 years,

NOTE: Group IIT subjects were employed in the tests described
in PAA Report DS-67-22,
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5) Equal Noisiness Contours - One-Third Octave Bandwidth
Noise in a Diffuse Field Environment

The remainder of the equal noisiness tests were conducted
in a semi-reverberant room used to approximate a diffuse
field listening environment. The test conditions were
designed to establish a basic set of equal noisiness contours
for a one-third octave band noise stimulus judged in a
diffuse field. In addition, the effects of instructional
set were evaluated. This included a test of the differences
between loudness and noisiness for these test conditions.

The test results for a one-second duration, one-third
octave band noise stimulus in a diffuse sound field are
shown in Fig. 23, The noisiness instructions in Appendix IIa(C
were used in this test. The group of nine subjects for this
test were randomly selected from Group I of Table III., Since
it was possible to achieve somewhat higher sound pressure
levels in the semi-reverberant room, the equal noisiness
contours were defined at levels of 60, 70, 80, 90 and 100 43
SPL for the 1 kHz noise band standard.

6) Equal Noisiness Contours - Loudness vs Noisinees
Instructions

The next set of four tests utilized a stimulus duration
of four seconds. The test instructions in these four
Judgment tests were talen from Kryter and Pearsons (1963).
Test conditions were set to determine the effect of basing
the comparisons on the subjective attribute of loudness rataer
than noisiness. Test Groups IV and V, described in Table III,
were given instructions for judging either loudness or noisiness.
The noisiness instructions were those given in Appendix 1I.g
These were also used as loudness instructions §Appendix II-p
by substituting this latter ettribute for noisiness throughout
the instructions.

The equal noisiness and equal loudness contours obtained
for the sgeciried test conditions are presented in Figs. 24
through 26, These data for loudness and noisiness were com-
pared using the t-test st each frequency and for each contour,
The results showed no significant difference in the resuits
for the two different instructions under these conditions.

The data for all tesats conducted in the semi-reverberant
room were averaged to produce the smooth contours thich are
developed in Figs. 29 through 32. For the test conditions
described in this section, the family of curves shown in
Fig. 32 represent the shape of the contours for ¢ diffuse
field environment, characteristic of an indoor listening
situation.
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The diffuse field ecual nolsiness contours are
similar in shape to those obtained under free-field
conditions, The difference in the contours occurs in the
region of 8000 Hz where the diffuse field contours turn
downward unlike the free-field contoure which are rising
through this part of the frequency spectrum.

D. Discussion

As noted earlier (and further discussed in Appendix III)
it would not appear that data related to the growth of
noisiness, i.e., the increase in judged noisiness as a
function of sound intensity, are particularly critical
to the PNL calculation procedure. If this assumption 1is
correct, the Ilmportant information for the calculation
procedures is then related to equal noisiness contour shape,
bandwidth effects and the influence of the upward spread
of masking in a complex noise spectrum.

The experimentation described in this section nas been
directed toward a definition of the equal nolsiness contours
for a variety of test conditions. Since the shape of the
equal nolsiness contours are incorporated in the noisiness
and loudness calculation procedures it is of interest to
compare the contours developed in the current tests with
those used in some of the calculation procedures. The
most widely used current method for calculating the relative
acceptability of complex noise spectra is the scheme
implemented by Kryter (1959, 1963), termed Perceived Noise
Level (PNL).

The experimentally determined basis of the PNL scheme
is the equal noisiness contour determined at a sound
pressure level of approximately 90 dB (Kryter and Pearsons,
1963). This contour shape was originally extrapoleted toc
higher and lower levels to form the famlily of curves
relating noisiness to sound intensity. These curves are
compared with the experimentally determined cenisurs from
this investigation in Fig.33. The curve st the 90 dB SPL
obtained from the 1963 judgment tests is nearly identicai
to the contour at 90 dB SPL (1 kHz noise band) from the
current tests, At lower sound pressure levels {{for the
1 kHz standard) the existing contour shapes deviate from
those determined in the current tests. Insofar as most
PNL calculations for aircraft ncise are concerned with the
higher sound pressure levels (90-100 dB), these dirfferences
in contour shape may not significantly affect the PNAB
values.
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Whille past investigatione have produced reported
~ubjective differences between the attributes of loudness
and noisiness, it has not been possible to demonstrate
any consistent difference in the present laboratory tests.,
As seen in Fig, 34, the equal noisiness curves from this
investigation closely resemble the equal loudness data of
Robinson and Whittle (1964). It is possible that the state-
of-the-art in formulating test instructions for Jjudging
the different attributes of a complex nolse are inadequate
for extracting such differences or a consistent and
predictable basis. As a result, test subjects may be
evaluating some generalized attribute such as acceptability
for the noise.

As noted in a previocus section of this report, different
equal noisiness contour shapes were obtained for free-fleld
and diffuse-field listening conditions (Figs. 20 and 32).

A comparison of the differences for these two listening
conditions is shown in Fig, 35. The solid curve represents
differences between the two environments for loudness
Judgments and the broken curve shows the same comparison
for the noisiness data from the current investigation.
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IV, SUMMARY AND CONCLUSIONS

The growth of noisiness has been measured for a 1 kHz
tone and for octave bands of noise centered at 1 kHz. Test
results indicate that this growth function is essentially
the same for tones and noise at 1 kHz but is highly dependent
on test method. Except for the low reference level (50 dB
SPL), the results of the adjustment tests were between
8.5 dB and 14.3 dB (average 11.5 dB) for doubling or halving
the perceived noisiness of the test stimuli. At the 50 dB
SPL reference level, an average increase of 16.7 4B is
required for twice noisiness.

The magnitude estimaetion tesis resulted in consistently
larger values than those above for the growth of noisiness.
These values ranged from 20-27 dB increase in sound pressure
level for twice noisiness at the 70 @B SPL reference and from
14-20 dB at the 90 dB SPL reference. These values varied
according to the reference number used by the subject as a
basis for the magnitude estimation. Again, no differences
in the growth of noisiness for tones and nolse were observed.

To determine the growth of noisincss at frequencies other
than 1 kHz equal noisiness contours were determined for
selected acoustical environments and test stimulus conditions.
These contours are shown for:

1) Pure tones in a free-field environment.

2) One-third octave bands of noise in a free-field
environment,

3) One-third octave bands of noise in a diffuse field
environment.

In addition, the equsl noisiness contours were determined
for both one-second and four-second stimulus durations and
were compared with equal loudness contours obtained in this
investigation under identical diffuse field listening con-
ditions, The different stimulus durations were included to
allow comparisons with previous tests of both loudness and
noisiness.,.

During the course of this investigation the observation
was made that, for purposes of calculating the relative
noisiness of different spectra, the actual value used for the
growth of noisiness may not significantly affect the resulting
comparison. Calculations of the PNL of several typical noise
gpectra with different spectrum shapes have been made using

-53_




growth functions of 3 dB, 5 d3, 10 438, 20 dB and 30 dB
per doubling of noisiness. The results show relative
differences between these spectra of 2 PNdB or less using
the different growth functions.

The following conclusions have been drawn from the
results of the current investigations:

AR S AR i o B ke O SN

st

1) Values for the growth of noisiness are strongly
dependent on test method, i.e., adjustment vs
magnitude estimation. The growth rate at 1 kHz
from the adjustment tests averaged 11.5 dB per
coubling of perceived noisiness while the magnitude
estimation results showed an increase of approximately
20 dB required for twice noisiness,

[P

o aenstadd B s

2) The specific value used for the noisiness growth
function does not appear to significantly affect ;
the calculation of the relative acceptability of 3
different noise spectra. ;

3) At the higher reference levels (90-100 dB SPL) the ]
equal noisiness contours from this investigation are {
similar to the curves used in current calculation
procedures,

L) No significant differences were found in the equal
noisiness contours between the two different stimulus :
durations, one-second and four-seconds, or between i
the loudness and noisiness instructions under current !
test conditions,

By Py ey Sex) Gy Sy G BN SEE SN 2 oEN

5) The expected differences in the equal noisiness
contours between free~field and diffuse-field
listenirg conditions were similar to those found
by previous investigators for equal loudness
contours.
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INSTRUMENTATION

A, Growth of Noisiness at ] kHz

A block diaw.2m of the test system 1s shown in Figs, I-1
and I-2, The two test set-ups were used for the adjustment
method and the magnitude estimation method respectively.

For the first phase of the growth of noisiness tests, using
the adjustment method, the pure tone test signals were
generated with a BBN-designed oscillator and the noise source
was an Allison Labs Model 650 noise generator. The shaping
selector on the noise generator was set to deliver an equal
energy per octave nolse, The noise signal was sent through
a irohn-Hite Model 330 adjustable bandwidth filter set to
provide the spectrum shape shown in Fig. I-3, The remainder
of the system was identical for the two signals,

The signals were delivered to the Daven T-693-R attenua-
tors and then to the BBN-designed electronic gate and Grason-
Stadler Model B29E electronic switch., This gate provided
the timing for the sequence of four-second samples, The start
of the four-second signals was initiateda by the subject's
selector switch in the anechoic chamber, The gate was designed
go that once a stimuli was selected it remaired on for four
seconds regardless of any subgequent position of the selector
switch, The comparison signal channel was delivered to the
electronic gate through a 100 dB ten-turn potentiometer located
in the anecholc chamber, The output of the electronic switch
went to a McTntosh MC60 amplifier and then to the JBL Model
S-T7 speaker system in the chamber, A Bruel and Kjaer Type
2203 sound level meter and Hewlett-Packard Model 130-B
oscilloscope were used to monitor loudspeaker voltages during
the tests, The speaker voltages were calibrated for sound
pressure levels at the subject position, Measurements of
stimulus sound pressure levels were made with a Bruel and
Kjaer Type 4133 1/2" condenser microphone and Type 2203 sound
level meter with a Type 1614 octave band filter set, A Bruel
and Kjaer Type 4220 pistonphone was used to calibrate the
microphone and sound level meter system,

Jor the magnitude estimation tests, the stimuli were
recorded on an Ampex Model AG35C tape recorder and played
back through the same system for the tests, The stimulus
durations were four seconds with a one-second interval
between the standard and comparison stimuli, A six-second

I-1
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period between stimulus pairs was provided for the magnitude
estimatvion Jjudgments, The remainder of the test system was
the same as described previously for the adjustment tests
except that the gate was triggerec by a pulse from Channel II
of the tape recorder %o reduce any audible tape nolse durlng
the tests.

All judgments were carried out in an anechoic chamber
with the sound source located directly in front of the test
subject, All stimulus sound pressure levels were measured
at the subject position with subject removed.

B, Equal Noisjiness Contours, Pure Tone Stimuli

Dlock aiagrams ol the test equipment are shown in Fig. I-4,
For the pure tone tests, the BBN-designed oscillator and the
Krohn-Hite Model 202R variable oscillator provided two input
channels through Daven T-693-R attenuators to the BBN-designed
electronic gate and Grason-Stadler Mocdel 829E electronic
switch combination, This combination performed the necessary
switching and rise-decay shaping operations for the test
gignals, The timing of this switching operations was controlled
by the Ampex Model AG350 tape recorder and polar relay system,
The discrete frequency control signals were recorded on a two-
chaninel continuous tape loop, These were played back through
the AG350 system to activate the polar relay which in turn
provided the switching pulses necessary for the operation of
the electronic gate and the Grason-Stadler switch, The output
of the comparison signal source was delivered to the elec~-
tronic gate via a 100 dB, ten-turn precision potentiometer,
with which the subject could adjust the levels of the com-
parison stimulli, The output of the electronic switch went to
a JBL Model SEL440S 40-watt solid state amplifier and was
reproduced through a JBL Model S~7 speaker system, The loud-
speaker voltages were monitored on a Bruel and Kjaer Type 2203
sound level meter, and a Hewlett-Packard Model 130-B oscillo-
scope, The speaker voltage was calibrated in terms of sound
pressure level at the subject position,

Measurements of amblent noise levels and stimuli sound
pressure levels were made with a Bruel and Kjaer Type 4133
1/2" condenser microphone and Type 2203 sound level meter
with Type 1613 octave band filter set. A Bruel and Kjaer
pistonphone, Type 4220, was used to calibrate the micro-
phone and sound level meter system,

-5
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lleasurements of small scale variations 1in sound pressure
level around the subject's head position were made over an
area of six inches (vertical) by eighteen inches (horizontal)
centered at the average subject ear position. With no subject
present, less than 1 dB variation in sound pressure level
was observed over the specified area, Measurements were
made at two-inch separations 1n both directions,

c. e C 8 e-Third Octave Band Stimuli

The instrumentation for this series of tests was primarily
the same as that used for the test series in which pure tones
were used as stimuli, the differencs being the spectrum of
the test signal, A block diagram of the instrumentation is
shown in Fig, I-5,

The source of the test signal was an Alllson Labs Model
650-R random noise generator, set to produce a pink noise
having equal energy per octave bandwidth, Th. output of the
noise generator was passed through a Bruel and Kjaer Type
2603 microphone amplifier and Type 1612 one-third octave
band filter set., Two outputs were available from the one-
third octave band filter, One consisted of a one-third
octave bandwidth signal with center frequency selectable by
the experimenter, The other output was the fixed 1 kHz,
one-third octave band obtained from an output on the spectrum
shaper,

Two test chambers were used: An IAC anechoclc chamber with
dimensions 8 x 10 x 7.5 ft, and a semi-reverberant room with
dimensions 14,5 x 11 x § ft, The test subject was seated
facing the speaker system at a distance of 5 ft, A small
head positioning device was included on the back of the sub-
Ject chair, Measurements of ambient noise levels and stimulil
sound pressure levels were made with a Bruel and Kjaer Type
4133 1/2" condenser microphone and Type 2203 sound level
meter equipped with Type 1613 octave band filter set,

The semi-reverberant room was made up of four plaster
walls, a cement floor and a celling covered with randomly
perforated cellulose fiber tile, Reverberation time measure-
ments were made in this room using an SKL Model 507 decay
rate meter with the resulting values shown in Table IA,
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TABLE IA

SEMI-REVERBERANT ROOM REVERBERATION
MEASURED WITH SiI. MODLL 507 DECAY RATE METER

Reverberation Time in Seconds

Getave band center frequency in Hz

63 k25 250 500 1000 2000 4000 _ 8000
.99 .86 AT .50 .50 LUl .39

.95 | .85 | .49 | .49 49 .48 A2 .39
.88 .88 JAu2 A2 U2 Ji2 .38 .56
.80 .83 A1 49 Sl .39 .39 Qb2
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APPENDIX ITIA

NOISIWNESS OF SOUNDS
METHOD OF ADJUSTMENT INSTRUCTIONS

This test 1s part of a series of tests to learn more 2bcut
the noisiness or unwantedness of sounds, Your task is to
adjust the level of the comparison sound until its noisiness
is some multiple or fraction of the noisiness of the standard
sound, The particular multiple or fraction is indicated by
the display in front of you.

The controls to accomplish this task consist of a "selector
switch" and a "comparison level adJust control The selector
switch has three positions: '"standard" neutral ’ and "com-
parison", You may switch from the "gtandard" to the "comparison
as often as Jou wish, However, please operate the switch only
during the "off" periods after a signal is presented, The level
of the comparison sound can be adjusted with the comparison
level adjust control, In making your Jjudgment, we suggest that
you proceed by bracketing ycur answer, For example, 1if you
are asked to adjust the comparison sound until it is half as
noisy as the standard, you should find levels that are greater
than half as noisy and less than half as noisy before finally
deciding on a level that you feel is exactly half as nolsy as
the standard When Jou have reached your final decision,
press the “"finished" button and wait for a new fraction or
multiple to appear in the dilsplay, Please do not change level
control or switch until the new fraction or multiple appears
in the display.

II-1
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APPEMDIX IIB

NOISINESS OF SOUNDS
MAGNITUDE ESTIMATION INSTRUCTIONS

This test 1s part of a series of tests to learn more about
the noisiness or unwantedness of sounds, Your task is to
listen to the first sound (standard) in each pair, then rate
the noisiness of the second sound in comparison with the stan-
dard. In order to rate the noisiness of the second sound of
each pair, you will be asked to assign one of three values to
the first (standard) sound each time, These values for the
standard will be 10, 100 or a value of your own choosing. The
particular one of these three values you are to assign to the
standard sound will be announced for each pair during the test.

You will hear a serles of these pairs of sounds, Before
each pair you will be asked to assign one of the three values
to the first (standard) sound in the pair, After hearing both
sounds in the pair, rate the nolsiness of the second sound in
comparison with the first., On your answer sheet write the
value you would assign to the second sound based on the value
you are asked to use for the standard, For example, if you
are asked to use a value of 10 for the nolsiness of the stan-
dard sound, and you believe the second (comparison) sound is
twice as noisy as the first, you would write down a value of
20, If you belleve the second sound to be half as nolsy as
the first, you would write down a value of 5, If you are
asked to assign a value of your own cholce to the first sound
(standard), write down both your selection for a standard
and the related value you assign to the second sound,

IT-2
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APPENDIX IIC
EQUAL NOISINESS INSTRUCTIONS (BBN)

This test 1s part of a group of tests designed to learn
more about the noisiness, annoyance or unwantedness of sounds,
In this particular test, you will hear two alternating tones
One of these tones has been designated the "comparison" and
will be so indicated by the small light on the control box
in front of you, The other tone is designated the "standard"
Your task is to listen to these two alternating tones and by
means of the knob in front of you adjust the "comparison" tone
until it 18 as equally noisy or objectionable as the standard
tone, It is suggested that you use a bracketing procedure;
that is, adjuet the commarison tone so that it ic definitely
less objectionable or noisy than the standard and finally
adjust it to the point at which the comparison 1s equally as
noisy as the standard tone, When you have made the adjustment
for equal noisiness, push the button in front of you, Leave
the control knob in the position you have decided upon during
the last palr of tones until you hear a new pair of tones,
Then begin the above procedure all over again,

II-3
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APPENDIX IID

K~-P INSTRUCTIONS FOR JUDGMENTS
OF LOUDNESS OI' BANDS OF NOISE

The purpose of these tests 18 to determine the relative
loudness of various bands of noise,

'lhen the test starts, you will hear alternately two bands
of nolse presented at constant intervals, We will call the
first noise the standard and the second, the comparison., The
comparison noise is further identified by the panel 1light
directly in front of you which will glow only while the com-
parison noise 1is present,

You cannot change the duration of either noise but vou can

zihange the overall intensity of the comparison neise by turn-
ing the knob on the attenuator that is by your right hand,

Your job 1s to listen to the standard noise, then to listen
to the comparison nolse and then to adjust the intensity of
the comparison nolse until 1t sounds as loud to you as the
stancard,

You may listen to the two noises as long as you wish, It
is suggested that, before you proceed to equate the comparison
noise to the standard noise, you make the comparison noise
(No, 2) much more intense than the standard (No.l); then make
the comparison noise much less intense than the standard. With
those 1imits established, adjust the intensity of the compari-
son noise until it would be just as loud a3 the standard noise,
When you have reached a decision, push the button in front of
you, Leave the black knocb adjusted and wait for the next
trial.

i Al Al b . .




APPENDIX IIE

K-P INSTQUCTIONS FOR JUDGMENTS
OF NOISINESS OF BANDS OF NOISE

The purpose of these tests 1s to determine the relative
acceptabllity of various bands of noise,

'"hen the test starts you will hear alternately two bands
of noise presented at constant intervals, ‘e will call the
one noise the standard and the other the comparison, The
comparison nolse 1s further identified by the panel light
directly in front of you which will glow while the compari-
son noise 1s present.

You cannot change the curation of either noise but you can
change the overall intenslity of the comparison noise by turn-
ing the knob on the attenuator that is by your right hand.

Your job 1s to listen to the standard noise, then to listen
tc the comparison nolse and then to adjust the intensity of
the comparison noise until it sounds as acceptable to you as

the standard. accept e _we me at you w d
zgg as _soon have one as the other in or outside your home
c Q to 30 ¢t the a t S ate
ot rw we me e u ‘1"~ gcept that the -
wo e t o n

Qr outsjide your an ggg tge standard noise.

You may listen to the two noises as long as you wish, It
is suggested that, before you proceed to equate the comparison
noise to the standard noise, you make the comparison noise
much more intense than the standard; then make the comparison
noise much less intense than the standard, With those limits
established, adjust the intensity of the comparison noise until
it would be just as acceptable as the standard noise in or
outcide ycur nhome, Please push the button on your right to
indicate that you have reached a decision,
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EXPONENT IN THE POWER LAW AND
LOUDNESS OR NCISINESS CALCULATION

(1956), and the adaptation of this proposal for the calcu-
lation of the perceived ncise level as described by Kryter
(1959), involves four separate parts, (1) There is a set
of standard contours called equal loudness or nolsiness
contoure relating the sound pressure level in different
frequency bands needed to achieve the same loudness or
noisiness, (2) There is a growth function relating sound
pressure levels of a standard sound (1CCO Hz) to an internal
scale whose unit .s the sone in the calculation of loudness
-I and the noy in the calculstion of noisiness, (3) There 1is
a rule for combining the loudness or noisiness in different
frequency bands into a total quantity representing the overall
, loudness or noisiness of the sound, (4) Finally, there is
i conversion of this total quantity back to the sound preasure
-4 level of some standard stimulus such as a 1000 Hz sinusoid
B in the case of loudness, or a standard band of noise in the
| case of noisiness, This last step is simply the inverse of
i the growth law assumed in Step (2) above,

‘ I The calculation of loudness level as proposed by Stevens

: Since the only difference between the procedures for cal-

B culating noisiness and loudness is the set of standard con-
tours, we can illustrate the major point of this appendix by

. reference to the calculation of noisiness and omit reference

! to the loudness calculation, This will simplify the expo-

- sition, but the reader should remember that the conclusions
apply equaliy to the calculation of loudness or nolsiness,

The large degree of independence between the final calecu~
lated value and the exponent of the power law results because
& of the highly non-linear procedure (picking & maximum) used
! in determining the total ncisiness from the noisiness of the
individual bands (Step 3), and the fact that Step (4) and
Step (2) are inverses of one another,

*l Ca lations

-y In the calculation procedure, a steady-state sound is

} analyzed by measuring the rms pressure in successive octave

or third-octave bands, !/e shall consider only octave band
analysis but the general conclusions will pertain to third-
octave analyses as well, Let us denote by Py the rms pressure
measured in the ith octave band,

| ]
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Each py is converted to a noisiness ng via the following
equation:

a
p
n, = (Ei) 1=1,2..8 (1)

where k; 18 a constant and a is the exponent of the power
law, Tﬁe set of numbers ki, kp ... kg define the equal
noisiness contours, Actually, the equal-noisiness contours
are not exactly parallel (& may depend slightly on the
frequency band and level) but this detail need not concern
us in the present matter,

This rule for determining the total noisiness n¢ involves
picking the largest noy value, Doy and adding that value
to the weighted remainder,

g = np +F 2 (ng - Pna ) (2a)
or letting
b3 (ni - nmax) = s ni
1 # max
then
ng =M +F 2 ny (2v)
i # max

where F 13 a constant, (F = 0,3 in current procedures for
octave bands),

e can also write the calculation of ng as a funetion
of the pressure in various band, using Eq, 1 and 2b,

a
a p
= [(B s b |
"t [(k)max] *E O max(ki) (3)

Finally, we note that the perceived noise level in PNdB,
PNL, is defined as follows:

&
PNL = 20 log (n,)® + ¢ (4)
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where C 1s a constant, the PNL corresponding to 1 noy. The
value of o 18 0,6 and C is 40 dB in the current calculation
procedure,

Clearly if the sound iz a pure tone, there will be only
one noisiness value, an¢ since Eq, 1 and Eq, 4 find the a-
power and a-root of the same quantity, the PNL is essentially
the pressure level of the pure tone re the pressure corres-
ponding to 1 noy for that band, Thus, for a pure tone, the
value of the power law exponent, a, has no effect vhatsoever,

To provide an i1dea of how little the particular exponent
of the power law effects practical calculations, six hypo-
thetical sound spectra encompassing a variety of spectrum
shapes were selected for noisiness calculations with different
growth functions, The 8ix spectra are shown in Fig, 1, The
spectra shown are adjusted in level to yleld the same calcu-
lated perceived noise level, 106 PNdB (97 noys) by current
noisiness calculation procedures (K, D, Kryter and K, S,
Pearsons, 1963 and 1965) (Within a total spread of 0,5 PNdB),
Then we changed the power law exponent, &, by multiplying 1t
by m, where m = 3, 2, 1, 1/2, 1/3, From Eq. 4, 1t can be
seen that this changes the number of dB the perceived noise
level changes for a doubling of the total noisiness; for
example, 3dBifm=3, 5dB1i"m =2, 10 dB if m = 1 (the
present exponent), 20 dB is m = 1/2, and 30 dB 1f m = 1/3,

In making these calculations, separate values of the con-
stant F were assumed for each of the assumed growth functions,
(Note that changing F essentially changes the weight given
the noisiest frequency band with respect to the noisliness
contributed by the remaining octave bands),

The value of F was chosen via Eq, 2b, For each spectrum,
nmax and v, ni are known as well as the desired value for
i max

ny, thus, F could be determined, The approximate median
values 80 obtained were F = 6,6, 1.4, 0,3, 0,09, 0,05 for
m=3, 2, 1, 1/2 and 1/3 respectively, With these values
of Fl’ n, was caleculated for each of the six spectra,

In comparison with the original spread in perceived noise
levels of 0,5 PNAB for the current growth law of 10 dB ger
doubling of noisiness, the spread ranged from 0,5 to 2,

PNdB for the changes of 3 to 30 dB per doubling of nolsiness,
Thiz range must be considered small when it is realized that
the actual change in the spectra as a function of frequency 1is
about 40 dB, in addition to the large change in assumed growth
lavw,
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Discussion

Implications that one draws from this analysis depend in
lar;e part on the mcotives one has for using these calculation
procedures, The observation that the calculation of the per-
ceived noise or the loudness level is largely unaffected by
the value of the e.ponent of the power law in no way challenges
the claim that raising the sound pressure level by 10 4B
doubles the noisiness or loudness, That rule is the power law
and this appendix in no way challenges that relationship. In
practical application of noisiness or loudness calculation,
however, two sounds are often compared and one wants to know
if they differ in perceived noise level by 2 PNdB, 7 PNdB,
or 20 PNdB, Similarly, the effects of sound treatment are
seldom expressed numercially as reduction of noisiness but
rather that the treatments caused a 5 PNAB reduction in the
perceived noise level, The latter numbers are not much
affected by the form of the growth law,

Such invariance is a virtue because there may be differ-
ences among subjects as to the exact form of the growth law
(W, J. McGill, 1960; J., C, Stevens and M, Guirao, 1964),
Despite these differences, people may still agree that two
sounds are different by about the same number of decibels,
It also suggests that, since one exponent has much the same
effect as any other, convenience might well dictate the
choice of the exponent in a loudness or noisiness meter,

III-4
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